
Radial breathing mode in silicon nanowires: An ab initio study

E. Bourgeois
Laboratoire de Physique de la Matière Condensée et Nanostructures (LPMCN), UMR CNRS 5586, Université Claude Bernard Lyon 1,

Bâtiment Brillouin, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France

M.-V. Fernández-Serra
Department of Physics and Astronomy and New York Center for Computational Science, Stony Brook University, Stony Brook,

New York 11794-3800, USA

X. Blase
Institut Néel–CNRS–Université Joseph Fourier, BP 166, 38042 Grenoble Cedex 9, France

�Received 12 February 2010; revised manuscript received 14 April 2010; published 25 May 2010�

We study by means of first-principles calculations the phonon spectrum of silicon nanowires oriented along
the �110� direction with a diameter ranging from 1.0 to 2.4 nm. We analyze in particular the evolution of the
radial breathing mode frequency as a mean to calibrate experimentally the diameter through Raman analysis.
Remarkably, the results of elastic theory analysis are very reliable even in the limit of ultrathin wires with
significant deviations from the cylindrical shape.
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The compatibility of silicon nanowires �SiNWs� with sili-
con based technology is certainly an important factor ex-
plaining the large amount of work devoted to the synthesis
and characterization1 of these semiconducting 1D systems
with promising applications in electronic,2 optoelectronic or
photovoltaic3 devices, molecular recognition, and sensing4 or
thermoelectricity.5

An important tool for the characterization of wires is pro-
vided by the analysis of phonon modes. The wealthiness of
information drawn from such measurements has been largely
exemplified in the case of carbon nanotubes with a particular
emphasis on the study of the diameter dependent Raman-
active radial breathing mode.6 While much ab initio simula-
tions have addressed topics related to structural, electronic,
or transport properties, studies of vibrational modes with
first-principle approaches remain limited to a recent study of
the phonon band structure of SiNWs,7 complementing previ-
ous analysis based on empirical potential calculations of the
optical modes8 and Raman active modes.9

In the present Brief Report, we study by means of ab
initio calculations the radial breathing mode of small free-
standing hydrogen-passivated SiNWs grown along the �110�
direction. The diameter of the studied SiNWs ranges from
1.0 to 2.4 nm. We provide in particular a scaling law as a
function of the NWs radius for the radial breathing mode
�RBM� frequency and compare the associated radial dis-
placements with elastic theory analysis.

Our calculations are performed within the density-
functional theory using pseudopotentials and the PBE
exchange-correlation functional.10 For wires up to 62 atoms
per cell, we performed plane-wave-based calculations with
the PWSCF package11 with a kinetic energy cutoff of 25 Ry
using ultrasoft pseudopotentials. These calculations were re-
peated using the SIESTA code12 with a double-zeta polarized
basis for Si and double-zeta basis for H. The reduced size of
the localized basis allowed further to study a larger wire
comprising 144 atoms per cell with a diameter of 2.4 nm.
The sampling of the one-dimensional �1D� Brillouin zone

�BZ� was performed with 16 k points. Cell sizes along the
wire axis and atomic positions were relaxed with a
0.1 eV /Å threshold criteria. A minimal distance of 10 Å
was kept between periodic image wires in the transverse di-
rection.

We plot in Figs. 1�a�–1�d� the symbolic representation of
the wires studied in the present work. Since the wires are not
perfectly cylindrical, the diameter is defined following Ni-
quet and co-workers in Ref. 13 as the diameter of the cylin-
der of length � with a volume equal to �=Nsca

3 /8, where
Nsc and � are the SiNW unit cell number of atoms and
length, and a the bulk Si lattice parameter. Surface dangling
bonds are passivated by hydrogen atoms.

Phonon modes at zone center were obtained by diagonal-
izing the dynamical matrix.14 An analysis of the calculated
phonon eigenvectors at zone center easily allows to recog-
nize the RBM mode for each wire. We plot in Fig. 2�a� the
evolution of the RBM frequencies as a function of diameter.
Both plane wave and localized-basis calculations yield very
similar results, indicating the reliability of the “less con-

FIG. 1. �Color online� Symbolic representation of the wires
studied in this work with diameters of �a� 1.03, �b� 1.26, �c� 1.67,
and �d� 2.39 nm. In �e� and �f�, side view of the 1.03 nm diameter
wire with unreconstructed and reconstructed �period doubled� sur-
face, respectively.
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verged” local basis approach. The frequency evolution can
be nicely fit by an inverse power law,

�RBM�d� =
1

Ad + B
with �A = 5,3 � 10−3 cm/nm

B = 4,0 � 10−5 cm
�

The small value of the B/A ratio indicates that for wires a
few nm in diameter, a 1 /d law fits very well the RBM fre-
quency as predicted by elastic theory analysis.9 Such a good
agreement is quite striking given �a� the very small size and
�b� the severe deviation from the ideal cylindrical shape of
our wires. As a matter of fact, looking at the effect of a
period-doubling surface reconstruction for our smallest wire
�compare Figs. 1�e� and 1�f��, we observe that the RBM fre-
quency is hardly affected �see green diamond Fig. 2�, indi-
cating again that the RBM frequency is very robust against
details of the atomic structure. Our functional form �RBM�d�
fits further very well the results of Ref. 7 �see inset Fig. 2�
using the same diameter definition. Quite surprisingly, in the
ultrathin limit of the “two-atoms across” wire treated in Ref.
7 �see inset drawing�, which we excluded from the set of data
points fitted, the agreement with the elastic theory law is still
very good.

In the well-known case of the nanotubes, for which a
large bulk of Raman studies of the RBM mode have been
performed over the years, the deviations from elastic theory
in the small diameter limit were also observed to be rather
small despite the strong effects of curvature on some of the
nanotubes properties.15,16 Such conclusions apply however to
pristine tubes since, e.g., coating of tubes by weakly bound
�physisorbed� molecules was shown to quench the RBM
mode.17 In the present case of SiNWs, we can expect our
results to be significantly altered upon functionalization by
large molecules or coating by an all-around insulating gate.

In the larger size limit, for a wire of d=5 nm, the fit
yields a frequency of 38 cm−1, in remarkable agreement
with the 40 cm−1 value obtained by Thonhauser and Mahan
for �111�-oriented wires using a semiempirical Stillinger-
Weber potential.9 Again, such good agreement can be
interpreted as the signature of the reliability of isotropic elas-
tic theory analysis. The present results strongly suggest that

the RBM analysis is an excellent tool, even in the ‘ultimate”
size limit �d�0.5 nm�, to obtain information on the nano-
wires mean diameter. While SiNWs can be grown in many
directions, the success of the isotropic elastic theory analysis,
and the good agreement between our fit of �110� wires data
with the frequency of the 5 nm thick �111� wire, suggest that
the RBM frequency should mainly depend on the diameter,
but only weakly on the crystallographic direction of wire
growth.

We finally analyze the radial displacement associated with
the RBM modes �see Fig. 3�. To represent all wires on the
same graph, the radial position of the atoms is normalized by
the wire radius and the radial displacement is divided by the
maximal radial displacement. The results are compared to
standard elasticity theory9 and we plot in full line the nor-
malized elastic displacement J1��r /R� /J1��� where J1 is the
first-order Bessel function of the first kind. The coefficient �
such that �2=8�1−r� / �2−r� is related to the shear modulus
� and the first Lamé parameter � through r=� / ��+2��.
Taking 0	r	0.4 as suggested in Ref. 9, one obtains the two
limiting full line curves in Fig. 3. Even though significant
deviations exist as compared to any smooth continuous curve
that would yield elastic theory analysis �depending on the r
value�, the deviations start to be reasonable even for the
rather small d=1.67 nm diameter wire. The better agreement
between ab initio calculations and elastic theory analysis for
phonon frequencies as compared to individual atom displace-
ments can be justify by the fact that the energy change upon
phonon distortion is averaging over all atomic displace-
ments. Similar conclusions can be drawn in, e.g., the analysis
of the strain energy and atomic displacements around a dis-
location in an extended solid.18

In conclusion, we have studied the zone-center phonon
modes of small SiNWs with diameter ranging from 1.0 to 2.4
nm. We find that the radial breathing mode frequencies fol-
lows quite robustly the elastic theory analysis, in spite of the
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FIG. 2. �Color online� Evolution of the frequency as a function
of diameter for the RBM mode. The SIESTA results are in red �open
squares� and the PWSCF one in blue �open circles�. The full line is
the �RBM�d� fit �see text�. The green diamond corresponds to the
reconstructed wire in Fig. 2�f� �PWSCF�. Inset: results of Ref. 7
�crosses� compared to our fit in full line. The smallest wire cross
section is drawn symbolically �no hydrogen�.
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FIG. 3. �Color online� Normalized radial displacement of Si
atoms for the RBM mode. Changing symbols �colors� indicate
wires with varying diameter. The two full lines are the results of
isotropic elastic theory with the elastic constants related r parameter
spanning the range of acceptable values �see text�.
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variations from cylindrical shapes in the small diameter
limit, and rather independently of the computational tech-
nique adopted, provided presumably that the elastic con-
stants are well reproduced. This suggests that RBM measure-
ments are a very reliable tool to identify nanowire diameters
down to the ultrathin limit.19

The calculations have been performed at the French
CNRS National Computing Center �IDRIS, Orsay� and the
CIMENT supercomputing center in Grenoble. This work was
partly supported by the French National Agency for Re-
search �ANR� through the contract QuantaMonde Grant No.
ANR-06-NANO-069-02.
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